Mat 211 – Discrete Mathematics Exam # 2

Solve the following problems

Name: Michel Fores

Course No: MAT 211

Grade:

ID: 20051307

Section: 9-10

Date: 8-1-07

1) a)
$$f(1) = 1$$

 $f(m) = 2f(m-1)$ $n > 2$.
 $n = 2$ and $m = 3$ and $n = 4$ and $m = 5$
 $f(2) = 2f(1) = 2 = 2^4$
 $f(3) = 2f(2) = 4$

f(3) = 2f(2) = 4 2, f(4) = 2f(3) = 8. 2,

f(5) = 2f(4) = 16

=)
$$f(m) = 2^{m-1}$$

ba = ba + 4

ba: 8-2=6.

b3= b2+4

b3= 12-2=10

=> bm= bm-1+4

=> each +- shirt must have a (colur, gender, sige).

taski: Colors ni=12 => multiplication rule

taske ; gene M=a taske: Mis M=1 =, 72 wayr.

b) to question.

91: 4 possible any

91 . " "

93: / - - -

910; 4-

according to multipli artia rule
400 1048576 ways. (3)

3) 50 high schools.

at least to come from the same high shool.

Let N boyed is the Mb of but books.

K bixes is the Mb of high schools

$$\left\lceil \frac{N}{K} \right\rceil = \left\lceil \frac{N}{50} \right\rceil = 10$$

9 < N & 10

450 < N & 500

=> the minimum us of students is N= 451.

4) 3M 4W.

Committee with 4 members. if Dame ub of Men and Women = 2 Men and 2 Women.

$$= \sum_{x \in A_1 \setminus X_2 \setminus A_1 \setminus A_2 \setminus A$$

=> $C(3,2) \times C(4,2)$ = $\frac{3!}{2! \cdot 1!} \times \frac{4!}{2! \cdot 2!} = 3 \times 6 = 18$. 5) $(2x + 3y)^{10} = \sum_{j=0}^{\infty} {m \choose j} n^{m+j}$ coeff of n'y'.

6) R= { (1,3), (1,4), (2,3), (2,4), (3,1), (3,4) }. A= { 1,2,3,4 } A= {1,2,3,4 }


```
of reflexive closure of R
  R,= BOV
 such that D = { (4,1), (2,2), (3,3), (4,4)}. (4,4).
= R' = \{(\lambda, 1), (\beta, 3), (3, 3), (4, 74), (1, 3), (1, 4), (2, 3), (3, 1), (2, 4)\}.
d) symmetric closure of R.
  R = RUR^{-1}

Autor Har R^{-1} = \{(3,1)(4,1)(3,2)(4,2)(1,3)(4,1)\}.
   1- that R'= {(2,3)(3,1)(1,4)(4,1)(2,3)(3,2)
(2,4)(4,2)(3,4)(4,3)3.
7) A = {a,, a, a, a,, ... auf
               4 clement
  AxA = n' elements
  total nb of relations is 2"
      Ta, b, a, b, a, b, ... a, b, m
  Ris refluire up of most that are refluire is 2" (m= up of diagonal elmat).
  Ris symmetric. who of clanats N=(M) (M-1) x-- (M-1).
  and Now R'= RUR, & 2 2 melatin R'
```